# Generation of the electrochemical potential of Na<sup>+</sup> by the Na<sup>+</sup>-motive NADH oxidase in inverted membrane vesicles of *Vibrio alginolyticus*

# Hajime Tokuda, Toshiaki Udagawa and Tsutomu Unemoto

Research Institute for Chemobiodynamics, Chiba University, 1-8-1 Inohana, Chiba 280, Japan

Received 12 February 1985

Inverted membrane vesicles prepared from Vibrio alginolyticus generated a membrane potential (positive inside) and accumulated Na<sup>+</sup> by the oxidation of NADH. Generation of the membrane potential required Na<sup>+</sup> and was inhibited by 2-heptyl-4-hydroxyquinoline N-oxide, a specific inhibitor of the Na<sup>+</sup>-dependent NADH oxidase. Collapse of the membrane potential by valinomycin stimulated the uptake of Na<sup>+</sup>. In contrast, accumulation of H<sup>+</sup> was not detected under all the conditions tested. These results suggest that only Na<sup>+</sup> is translocated by the Na<sup>+</sup>-dependent NADH oxidase of V. alginolyticus.

Inverted vesicle Na<sup>+</sup> pump NADH oxidase Marine bacterium Na<sup>+</sup> electrochemical potential Respiration

#### 1. INTRODUCTION

The marine bacterium Vibrio alginolyticus retains an Na<sup>+</sup> pump which is coupled to respiration [1,2]. Examinations of respiratory activities in the wild-type, Na<sup>+</sup> pump-defective mutants, and a spontaneous revertant revealed that the Na<sup>+</sup> pump is coupled to Na<sup>+</sup>-dependent NADH oxidase [3,4]. Moreover, it was shown that the Na<sup>+</sup>-dependent NADH oxidase reconstituted into liposomes translocated Na+ as a primary result of NADH oxidation [5]. Since NADH is impermeable to membranes, inverted membrane vesicles were expected to provide a useful system for studying the relationship between Na+ translocation and NADH oxidation. Here, inverted membrane vesicles were prepared from V. alginolyticus and examined for Na<sup>+</sup> pump activity.

Abbreviations: CCCP, carbonyl cyanide m-chlorophenylhydrazone; HQNO, 2-heptyl-4-hydroxyquinoline N-oxide;  $\Delta\psi$ , membrane potential

# 2. EXPERIMENTAL

#### 2.1. Preparation of inverted membrane vesicles

V. alginolyticus 138-2 was grown at pH 8.5 on a complex medium [6] supplemented with 0.2% glucose and harvested at the late logarithmic phase of growth. A buffer solution containing 10 mM Hepes-KOH, pH 7.5, 0.2 M K<sub>2</sub>SO<sub>4</sub>, 5 mM MgSO<sub>4</sub> was used for the preparation of K<sup>+</sup>-containing vesicles (K<sup>+</sup>-vesicles). K<sup>+</sup> in this buffer solution was replaced by Na<sup>+</sup> for the preparation of Na<sup>+</sup>-containing vesicles (Na<sup>+</sup>-vesicles). The harvested cells were washed with and resuspended in the respective buffer solution at a concentration of 0.2 g wet wt/ml. The cells were ruptured by a single passage through a French pressure cell at 8000 lb/inch<sup>2</sup>. Unbroken cells and large debris were removed by centrifugation at  $30000 \times g$  for 15 min. Inverted vesicles were collected by centrifuging the supernatant at  $100000 \times g$  for 2 h and washed once with the buffer solution. The pellet was resuspended in the buffer solution containing 10% glycerol to give a final concentration of about 40 mg protein/ml and kept frozen at  $-70^{\circ}$ C. The intravesicular volume of inverted vesicles was determined from the difference in [<sup>3</sup>H]water and [<sup>14</sup>C]lactose spaces as in [7]. Protein was determined by the method in [8].

# 2.2. Assays for the Na<sup>+</sup>-motive NADH oxidase

NADH oxidase was spectrophotometrically assayed at 30°C as in [4]. Flow dialysis [1,9] was performed at room temperature to determine  $\Delta\psi$  (inside positive),  $\Delta pH$  (inside acidic or alkaline) and Na<sup>+</sup> concentration gradient as in [5] except that 20 units of alcohol dehydrogenase (EC 1.1.1.1, Sigma) and 1% (w/v) ethanol were included in the upper chamber of the flow dialysis cell. The reaction mixture was kept under a stream of oxygen. The buffer solution pumped through the lower chamber also contained 1% ethanol and had the same salt compositions as those in the upper chamber. Radioactivities in dialysate were continuously monitored as in [1].

#### 3. RESULTS

# 3.1. NADH oxidase in inverted membrane vesicles

When cells of V. alginolyticus are lysed by exposure to hypotonic medium, most populations of membranes isolated from the lysates still retain rod-shaped structure and are permeable to dextran [10]. On the other hand, rupture of the cells by passage through a French pressure cell led to the formation of inverted membrane vesicles. Na<sup>+</sup> seemed to be unnecessary for the preparation of inverted vesicles, since the lactose-impermeable space of K<sup>+</sup>-vesicles (0.27  $\mu$ g/mg protein) was similar to that of Na+-vesicles (0.24 µg/mg protein). NADH oxidase in both vesicles required external Na+ for maximum activity, whereas internal Na<sup>+</sup> had only a marginal effect on the activity (table 1). In the presence of 1 µM HQNO, the activity was inhibited to a similar level under all conditions examined.

# 3.2. Generation of $\Delta \psi$ and $\Delta pH$ by inverted membrane vesicles

 $\Delta\psi$  (inside positive) was determined at pH 7.5 from the distribution of SCN<sup>-</sup> by flow dialysis (fig.1). Since large amounts of inverted vesicles were needed for the detection of  $\Delta\psi$  by flow dialysis, NADH added at 10 mM was exhausted shortly after its addition and caused only a tran-

Table 1

NADH oxidase in inverted membrane vesicles prepared from V. alginolyticus

| Cation          |                 | Activity                  |        |
|-----------------|-----------------|---------------------------|--------|
| Internal        | External        | (µmol/min per mg protein) |        |
|                 |                 | - HQNO                    | + HQNO |
| K <sup>+</sup>  | K+              | 0.83                      | 0.35   |
|                 | Na <sup>+</sup> | 2.07                      | 0.45   |
| Na <sup>+</sup> | K <sup>+</sup>  | 1.29                      | 0.33   |
|                 | Na <sup>+</sup> | 2.23                      | 0.43   |

Enzyme activity was determined in the presence of K<sup>+</sup> or Na<sup>+</sup> at pH 7.5 as described in the text using inverted vesicles containing K<sup>+</sup> or Na<sup>+</sup>. The effect of 1  $\mu$ M HQNO on the activity was also determined under each condition

sient accumulation of SCN<sup>-</sup> (A). Subsequent addition of alcohol dehydrogenase in the presence of 1% ethanol led to regeneration of NADH and hence  $\Delta \psi$ . Therefore, the following experiments were performed in the presence of an NADHgenerating system. K<sup>+</sup>-vesicles in the presence of 0.4 M Na<sup>+</sup> generated 101 mV of  $\Delta \psi$  which was collapsed by combined addition of HONO and CCCP (A) or by single addition of valinomycin (B). As shown in inverted membrane vesicles of Escherichia coli [11], Cl was permeable to membranes and collapsed  $\Delta \psi$  (C and E).  $\Delta \psi$  generated by K<sup>+</sup>-vesicles in the absence of Na<sup>+</sup> was small (76 mV) and stimulated to 99 mV by addition of 20 mM Na<sup>+</sup> (D). Na<sup>+</sup>-vesicles in the presence of 0.4 M Na<sup>+</sup> generated ∆ \( \psi\$ of 148 mV at 5 min after addition of NADH (E), which was considerably larger than that generated by K+-vesicles in 0.4 M Na<sup>+</sup>. When inverted vesicles were treated with HQNO, generation of  $\Delta \psi$  was markedly inhibited (F).

Examinations of methylamine uptake or quinacrine fluorescence quenching revealed that no  $\Delta pH$  (inside acidic) was generated during oxidation of NADH by inverted vesicles. Collapse of  $\Delta \psi$  by valinomycin in K<sup>+</sup>-vesicles or by Cl<sup>-</sup> in Na<sup>+</sup>-vesicles did not lead to the generation of  $\Delta pH$ . In contrast, Na<sup>+</sup>-vesicles in the presence of CCCP at pH 7.5 accumulated acetate indicating the generation of inside alkaline  $\Delta pH$  of 57 mV (not shown).

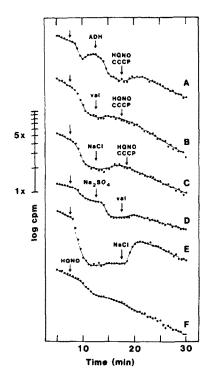



Fig.1. Generation of  $\Delta \psi$  (inside positive) by inverted vesicles prepared from V. alginolyticus. Flow dialysis was performed as described in the text to determine  $\Delta \psi$ . Unless otherwise specified, assay mixture (0.4 ml) contained 50 mM Hepes-NaOH, pH 7.5, 0.2 M Na<sub>2</sub>SO<sub>4</sub>, 5 mM MgSO<sub>4</sub>, 1% (w/v) ethanol, 20 units alcohol dehydrogenase (340 units/mg protein) and 10 mg protein of K+-vesicles. The first arrow in each pattern indicates the addition of NADH at 10 mM. In assay A. alcohol dehydrogenase (ADH) was added after addition of NADH as indicated. Assay D was performed in a buffer containing K<sup>+</sup> in place of Na<sup>+</sup>. Na<sup>+</sup>-vesicles instead of K+-vesicles were examined in assay E. HQNO was added together with NADH in assay F. Each assay was started by addition of KS<sup>14</sup>CN (58 μCi/μmol, 65  $\mu$ M) at zero time. Disodium NADH was used in all assays except for assay D (dipotassium NADH). Other additions were made as indicated at following final concentrations: HQNO, 50 \( \mu M \); CCCP, 5 \( \mu M \); valinomycin (val), 25 µM; NaCl, 50 mM; Na<sub>2</sub>SO<sub>4</sub>, 10 mM.

# 3.3. Accumulation of Na<sup>+</sup> by inverted vesicles

<sup>22</sup>Na<sup>+</sup> uptake by K<sup>+</sup>-vesicles at pH 7.5 was monitored by flow dialysis (fig.2). Addition of 5 mM NADH in the presence of an NADH-generating system led to the accumulation of Na<sup>+</sup> by inverted vesicles (A). At about 5 min after

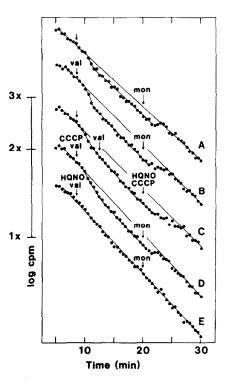



Fig. 2. Na<sup>+</sup> accumulation by inverted vesicles. Flow dialysis was performed as described in the text and in fig.1. K<sup>+</sup>-vesicles (10 mg protein) were examined in 0.4 ml of assay mixture containing 50 mM Hepes-KOH, pH 7.5, 0.2 M K<sub>2</sub>SO<sub>4</sub>, 5 mM MgSO<sub>4</sub>, 1% (w/v) ethanol and 20 units alcohol dehydrogenase. <sup>22</sup>NaCl (1.2 μCi, carrier-free) was added at zero time to start assays. At the first arrow in each pattern, disodium NADH was added at 5 mM with or without specified reagents. Monensin (mon) was added at a final concentration of 20 μM. Other additions were as in fig.1.

NADH addition, the concentration gradient of Na<sup>+</sup> across the membrane was 8.3. Valinomycin added with NADH (B) or after addition of NADH (C) did not inhibit but rather stimulated Na<sup>+</sup> accumulation. [Na<sup>+</sup>]<sub>in</sub>/[Na<sup>+</sup>]<sub>out</sub> of 15 was calculated at 5 min after additions of NADH and valinomycin (B). Inverted vesicles treated with CCCP and valinomycin maintained an about 12-fold concentration gradient of Na<sup>+</sup> throughout the assay (D). Addition of monensin or CCCP plus HQNO caused release of accumulated Na<sup>+</sup> under all the conditions. No accumulation of Na<sup>+</sup> occurred when inverted vesicles were pretreated with HQNO (E).

#### 4. DISCUSSION

Our results confirm that the Na<sup>+</sup>-dependent NADH oxidase of V. alginolyticus is an Na<sup>+</sup>-motive redox pump. Na<sup>+</sup> translocation observed must be a primary event of NADH oxidation since the collapse of  $\Delta \psi$  did not inhibit but stimulated Na<sup>+</sup> accumulation. Moreover, inverted vesicles accumulated Na<sup>+</sup> even in the presence of CCCP. On the other hand, H+ uptake was not detected under all the conditions examined. These results suggest that H<sup>+</sup> is not translocated by the Na<sup>+</sup>-dependent NADH oxidase. However, an oxygen pulse to anaerobic cell suspensions led to the extrusion of both H<sup>+</sup> and Na<sup>+</sup> [2]. Therefore, H<sup>+</sup> translocation in whole cells seemed to be ascribed to respiratory chains other than the Na<sup>+</sup>-dependent NADH oxidase. Indeed, HQNO specifically inhibited Na<sup>+</sup> translocation with little effect on H<sup>+</sup> translocation by whole cells [4]. The effects of various energy sources on energy generation are currently under examination using inverted vesicles prepared from the wild type and Na+ pumpdefective mutants.

 $\Delta \psi$  generated by Na<sup>+</sup>-vesicles was considerably larger than that generated by K<sup>+</sup>-vesicles although both vesicles showed similar NADH oxidase activity. Since Na<sup>+</sup> is more efficient than K<sup>+</sup> in stabilizing the membrane structure [12], these results may indicate that the presence of Na<sup>+</sup> during the preparation of inverted vesicles is favorable, but not essential, for the active vesicles.

#### **ACKNOWLEDGEMENT**

This work was supported by a grant from the Ministry of Education, Science, and Culture, Japan.

#### REFERENCES

- [1] Tokuda, H. and Unemoto, T. (1981) Biochem. Biophys. Res. Commun. 102, 265-271.
- [2] Tokuda, H. and Unemoto, T. (1982) J. Biol. Chem. 257, 10007-10014.
- [3] Tokuda, H. (1983) Biochem. Biophys. Res. Commun. 114, 113-118.
- [4] Tokuda, H. and Unemoto, T. (1984) J. Biol. Chem. 259, 7785-7790.
- [5] Tokuda, H. (1984) FEBS Lett. 176, 125-128.
- [6] Tokuda, H. and Unemoto, T. (1983) J. Bacteriol. 156, 636-643.
- [7] Rottenberg, H. (1979) Methods Enzymol. 55, 547–569.
- [8] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275.
- [9] Tokuda, H., Nakamura, T. and Unemoto, T. (1981) Biochemistry 20, 4198-4203.
- [10] Unemoto, T., Hayashi, M. and Hayashi, M. (1977)J. Biochem. (Tokyo) 82, 1389-1395.
- [11] Reenstra, W.W., Patel, L., Rottenberg, H. and Kaback, H.R. (1980) Biochemistry 19, 1-9.
- [12] Unemoto, T., Tsuruoka, T. and Hayashi, M. (1973) Can. J. Microbiol. 19, 563-571.